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The Fortuin-Kasteleyn random cluster representation of q-state Potts models is 
used to extend to every q two correlation inequalities proven previously only for 
even values of q. 
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In ref. 1 some correlation inequalities for q-state ferromagnetic Potts 
models are proven and used to derive results about  surface tensions. For  
technical reasons these inequalities are proven there only when q is an even 
number. Here I provide alternative proofs of these correlation inequalities 
which apply to any value of q. As a consequence, the results in ref. 1 for the 
surface tensions (Theorems 4 and 5 in that paper) are valid with this 
generality. 

Before stating and proving the re'suits, I ' introduce the basic notation. 
Let A be a finite, completely ordered set (the points in A are called sites) 
and to each i e A  attach a spin ai, which may assume the q values { 1,..., q}, 
where q ~> 2. The energy of the configuration ~re {1 ..... q}A is given by 

H(a)  = -- ~ J~a(ai, aj) 
i < j  

wl)ere 6(a ,b)  is equal to 1 if a = b  and 0 otherwise. J ~ > 0  are the 
ferromagnetic interactions. ( - )  will represent the expected value with 
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respect to the corresponding Gibbs measure (the temperature is arbitrary 
and may be thought of as absorbed in the J,7): 

( / ( a } )  = 
~2~ f{a)  e x p [ -  H(a ) ]  

~2~ exp[ - H(a ) ]  

for any observable f :  { 1,..., q } A ~ R. 

T h e o r e m .  Under the conditions above, if A and B are two subsets 
ofA,  a, b e { 1  ..... q} a n d a r  then (i) 

and (ii) 

iEA j ~ B  \ i ~ A  / \ j E B  

The proof of these results will be based on the use of the Fortuin-  
Kasteleyn representation for Potts models. (4'5) This construction was trans- 
formed into a powerful tool for obtaining rigorous results in ref. 2, which 
should be consulted for a systematic exposition of the subject. (See also 
ref. 3.) Next I review the definitions and relations that will be needed (for 
proofs see ref. 2). 

Given r c A ,  define ~ ( F ) =  {{i,j}:i,j~F}, ~ e = ~ ( A ) .  Each pair 
{i~ j}, i, j e  A is called a bond, and &~ is the set of bonds linking sites in 
F. The Fortuin-Kasteleyn random cluster model is introduced by ran- 
domly choosing a set of bonds that will be said to be occupied (the others 
being said to be vacant). Let 5 e be the random set of occupied bonds. The 
random cluster probability measure W is defined by taking the probability 
W(5 P = S) proportional to 

~I Pij" I~ (1-Po)'q c(s) 
{ i , j } e S  {i,j}~-~-~\S 

where Po = 1 - e x p ( - J i j )  and c(S) is the number of clusters into which A is 
partitioned by S if we declare two sites i and j to belong to the same cluster 
if there exists a chain of bonds (i, kl), (kl, k2),..., (k ,_  1, k,), (k,, j)  all of 
which belong to S (i.e., are occupied). In the terminology of ref. 2, W 
corresponds to the random cluster model with free boundary conditions. It 
is related to the Gibbs measure for the Potts model by relation (2.7) in 
ref. 2: for any observable f ,  

( / ( g ) ) =  ~ W(SP=S) Es(U({~)) (1) 
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Here, for each S, Es(.) is the average over the spins ai obtained by con- 
straining all the spins in each of the clusters of S to assume the same value 
and choosing these values for the different clusters independently according 
to the uniform distribution on { 1 ..... q }. 

A basic ingredient will be the F K G  property of W, proved in ref. 2. 
Consider the partial order on the set c~ of subsets of d defined by inclusion 
($1 ~< $2 if and only if S~ c $2). Then for any pair F, G: @ ~ ~ of non- 
decreasing functions, 

<~ 2 F(S) G(S) W(SP = S) (2) 
S 

In order to prove part (i) of the theorem, we first observe that it is 
enough to consider the case in which A and B are disjoint, since other cases 
reduce easily to this. By the properties of Gibbs measures, part (i) is 
equivalent to 

( i~  6(aJ'a))A>J(j~B6(aJ 'a)) 

Here ( . ) ~  is the expectation corresponding to the Gibbs measure on 
{ 1,..., q }" \ A, with boundary condition of type a in A, i.e., with energy given 
by 

HA( a )=-- 2 J~6(a~,aj)- 2 JaO(a~,a) 
i < j  i E A \ A  

i , j ~ A \ A  j E A  

As remarked in ref. 2, ( . ) A  also has a representation in terms of the 
random cluster model: 

( f ( a ) ) A  = ~ WA(5 p = S) E~'a(f(a)) (3) 
S 

In this expression WA is obtained from W by conditioning all the bonds 
that link points in A to be occupied. A a E s' (') has a definition similar to that 
of Es(.), except that the spins on clusters that intersect A assume the value 
a with probability 1. It follows from the F K G  relation (2), by taking 
G as the indicator function of the event { ~ ( A ) c S P } ,  that for any non- 
decreasing F, 

F(S) W ( ~  = S) <~,  F(S) W,4(5, ~ = S) 
S S 

(4) 
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Part (i) now follows easily from (1), (3), and (4). For this purpose let N(S) 
be the number of clusters into which B is divided when the set of occupied 
bounds is S. Let NA(S) be the number of those clusters above that do not 
intersect A. Then 

(j~8 6(aJ' a)) A= ~s WA(Ae=S)(1/q)NA(s) 

>! ~ W A(AP = S)(1/q) N(s) 
S 

>>. ~ W(6e = S)(1/q) N(s) 
S 

=(j~B 5(a/,a,) 

The use of (4) in the second inequality is justified since (1/q) N(s) is 
increasing in S. 

We turn now to the proof of part (ii). Clearly we can consider A and B 
disjoint, since otherwise there is nothing to prove. Let us denote by 
{A ++B} the event that some cluster intersects A and B. Now, by (1), 

(iHA S(ai'a)j~BS(a/' b,) 

= Z W(AP=S)Es[I~ 6(ai, a)1~ 5(aj, b)] 
S c~-~f i~  A j ~  B 

S e  { A ~ B }  c i e  A I - - j e  B 

The proof will be finished once we show that the rhs of (5) is not greater 
than 

{s~=ze W(SP=S'Es[i~a 6(ai, a ) ] t { s ~ , ,  W(5~=X,Es[j~nf(a j, b)]}  

=(~Af(a~'a')(j~ 6(a~'b)) 

The idea behind the proof of this inequality is the fact that once the clusters 
of A do not touch B, the spins inside B only "see" the boundary of these 
clusters, which are vacant bonds. Then, by FKG the number of clusters in 
B increases and it becomes more difficult for all the spins in B to take the 
same value b. 
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To make these statements precise, we need some definitions. Given 
S c 5  ~ set A(S)={i~A: {i,j}6S for some j}. Let S denote S plus its 
boundary, i.e., S =  { {i, j}:  i6 A(S), j ~  A }. Let J be the random set of sites 
that belong to clusters which intersect A. : -  will denote the random set of 
occupied bonds that form these clusters: J - =  5: c~ ~ ( J ) .  Now the rhs of 
(5) is equal to 

Z Z Z W(J=I ,Y=T,~ \T=V)  
l : A c I  Tc~P(/) V c , ~ ( A \ I )  

B c ~ l = ~  

x E r [ i [ I  A 6(~i,a)]Ev[1-~ 6(~j,b)] (6) 
J L j e B  

]But for a n y / ,  T, and V 

w(J=i, :-= T, ~ \  T= V) 

= W(J=I, 3-= T) W(5:n~(A\I)= V]J=I, 5-= T) 

= W(J=I, J =  T) W(5:nSfl(A\I)= V[5: c~ 5fl(I) = ~ )  

-- m ( J  - - / ,  : -  = T) W ( ~  -- Vl ~ n ~ ( I )  = ~3~) (7) 

The second equality follows from direct computations, which show that the 
second factor on either side of this equality is equal to 

{i j }  �9 V { i , j}  ~ ~ ( A \ I ) \  V 

where CA \ I(V) is the number of clusters into which A \ I is partitioned by V. 
We apply now the F K G  relation (2) with F as minus the indicator function 
of {5:c~ 5 ~ ( I ) = ~ }  and 

G(S)=Es[ 1-I 6(aj, b)]=(1/q) N's) 
L j � 9  

It tollows that for fixed I 

Z W(5:=VIS:nSf(I)=~3)EvII- I 6(~j,b)] 
V = ~ ' ( A \ I )  t - j ~ B  

V = , . ~  L j E B  
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Using (7) and (8), we see that the expression (6) is not greater than 

l : A c l  T c , ~ f ( l )  i 
B (~1=  (25 

<~ 

V = . . W ( A \ I )  

I:  A = 1 T c  ..JW(I) 
B ( ~ I = ~  

This finishes the proof of the theorem. I 

W ( J  = L Y - =  T) ET [iHA (5(6i, a ) l  

In ref. 1 inequalities (i) and (ii) are proven when q is even and the 
interactions are between nearest neighbors on a cubic lattice Z d (Jo = 0 if i 
and j are not nearest neighbors). There is nevertheless one sense in which 
the results in ref. 1 are more general than the ones here: they include some 
positive external fields H / a n d  K~ in the interaction. In our case this would 
amount  to taking 

H(a)  = - ~ J~ja(a~, aj) - ~ Hi~)((Ti, a) - Y' K i (~(Gi, b) 
i < j  i i 

With the techniques used here we can handle the case in which only the 
first extra term is present, i.e., Hi~>0, K i=0 .  To prove part (i) of the 
theorem, it is enough to consider a ghost site g and Jig = Hi (take g > i for 
all i ~ A ,  so that the Jgi are irrelevant). The external field is then transfor- 
med into the boundary condition ag = a. The proof of (i) is then essentially 
the same, but (1) has to be modified to account for the effect of the boun- 
dary condition. To prove (ii), consider also the ghost site as above. The 
proof is again basically the same as used before, but the roles of A and B 
have to be interchanged (i.e., J will be the set of sites connected to B, etc.). 
It is not clear whether one can use the techniques in this paper to deal with 
the cases of two or more types of external fields. 

The extensions of Theorems 4 and 5 of ref. 1 to all values of q do not 
depend on the above remarks, since their proofs rely completely on the 
correlation inequality (ii) for Potts models with no external fields and w i t h  
free boundary conditions. 
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